Optimization & Eye Pleasure: 78 Benchmark Test Functions for Single Objective Optimization
Original Source Here
Motivations
If you only are here for eye pleasure you can go to the Benchmark part. π
I was looking for a benchmark of test functions to challenge a single objective optimization. I found two great websites with MATLAB and R implementations you can find on the sources.
Yet I wanted to have this implementation in python. So I implemented these 78 functions in python in an homogeneous way to provide you an easy manner of working with them.
GitHub repository
You can find on the GitHub repository the implementation of the 78 functions as I already said. With this implementation, you can sort and filter those functions without having to know anything about these functions with a one liner.
You can also:
- plot in 3D
- plot 2D contours
- Get the latex formula
- Get the minimum global
- …
Note
- Only the 2D compatible functions are plot.
- It was a long work, so some mistakes can be found. Do not hesitate to comment or contact me if you find one of them.
- Enjoy!
Benchmark
The benchmark is alphabetically ordered except for the first function. I made a mistake in a formula and I found a beautiful function I wanted to show you. So I give my name to this function. π
Thevenot
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, parametric
Ackley
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, parametric
Ackley N. 2
non-continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Ackley N. 3
non-continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Ackley N. 4
non-continuous
, non-convex
, non-separable
, differentiable
, multimodal
non-random
, non-parametric
Adjiman
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Alpine N. 1
non-continuous
, non-convex
, separable
, differentiable
, multimodal
non-random
, non-parametric
Alpine N. 2
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, non-parametric
Bartels
non-continuous
, non-convex
, non-separable
, non-differentiable
, multimodal
, non-random
, non-parametric
Beale
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Bird
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Bohachevsky N. 1
continuous
, convex
, separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Bohachevsky N. 2
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Bohachevsky N. 3
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Booth
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Branin
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Brent
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Brown
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Bukin N. 6
continuous
, convex
, non-separable
, non-differentiable
, multimodal
, non-random
, non-parametric
Colville
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Cross-in-Tray
continuous
, non-convex
, non-separable
, non-differentiable
, multimodal
, non-random
, non-parametric
De Jong N. 5
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, parametric
Deckkers-Aarts
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Dixon Price
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Drop-Wave
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Easom
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, non-parametric
Egg Crate
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, non-parametric
Egg Holder
non-continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Exponential
continuous
, convex
, separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Forrester
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Goldstein-Price
non-continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Gramacy & Lee
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Griewank
continuous
, non-convex
, separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Happy Cat
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, parametric
Himmelblau
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Holder-Table
continuous
, non-convex
, non-separable
, non-differentiable
, multimodal
, non-random
, non-parametric
Keane
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Langermann
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, parametric
Leon
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Levy N. 13
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Matyas
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
McCormick
continuous
, convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Michalewicz
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, parametric
Periodic
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Perm d, beta
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, parametric
Perm 0, d, beta
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, parametric
Powell
continuous
, convex
, separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
Qing
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, non-parametric
Quartic
continuous
, non-convex
, separable
, differentiable
, multimodal
, random
, non-parametric
Rastrigin
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, non-parametric
Ridge
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, parametric
Rosenbrock
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, parametric
Rotated Hyper-Ellipsoid
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Salomon
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Schaffel N. 1
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Schaffel N. 2
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Schaffel N. 3
continuous
, non-convex
, non-eparable
, differentiable
, non-multimodal
, non-random
, non-parametric
Schaffel N. 4
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Schwefel
continuous
, non-convex
, separable
, non-differentiable
, multimodal
, non-random
, non-parametric
Schwefel 2.20
continuous
, convex
, separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
Schwefel 2.21
continuous
, convex
, separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
Schwefel 2.22
continuous
, convex
, separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
Schwefel 2.23
continuous
, convex
, separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
Shekel
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, parametric
Shubert
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Shubert N. 3
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Shubert N. 4
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Sphere
continuous
, convex
, separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
Styblinski Tank
continuous
, non-convex
, separable
, differentiable
, multimodal
, non-random
, non-parametric
Sum Squares
continuous
, convex
, separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Three-Hump
continuous
, non-convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Trid
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, non-parametric
Wolfe
continuous
, non-convex
, non-separable
, differentiable
, multimodal
, non-random
, non-parametric
Xin-She Yang
non-continuous
, non-convex
, separable
, non-differentiable
, multimodal
, random
, non-parametric
Xin-She Yang N.2
non-continuous
, non-convex
, non-separable
, non-differentiable
, multimodal
, non-random
, non-parametric
Xin-She Yang N.3
continuous
, convex
, non-separable
, differentiable
, non-multimodal
, non-random
, parametric
Xin-She Yang N.4
non-continuous
, non-convex
, non-separable
, non-differentiable
, multimodal
, non-random
, non-parametric
Zakharov
continuous
, convex
, non-separable
, non-differentiable
, non-multimodal
, non-random
, non-parametric
AI/ML
Trending AI/ML Article Identified & Digested via Granola by Ramsey Elbasheer; a Machine-Driven RSS Bot
via WordPress https://ramseyelbasheer.wordpress.com/2020/12/31/optimization-eye-pleasure-78-benchmark-test-functions-for-single-objective-optimization/